壓縮空氣儲(chǔ)能技術(shù)研發(fā)現(xiàn)狀及應(yīng)用前景
儲(chǔ)能技術(shù)是解決可再生能源大規(guī)模接入、提高常規(guī)電力系統(tǒng)和區(qū)域能源系統(tǒng)效率、安全性和經(jīng)濟(jì)性的迫切需要,被稱為能源革命的支撐技術(shù)。
壓縮空氣儲(chǔ)能系統(tǒng)具有規(guī)模大、效率高、成本低、環(huán)保等優(yōu)點(diǎn),被認(rèn)為是最具發(fā)展?jié)摿Φ拇笠?guī)模儲(chǔ)能技術(shù)之一。
壓縮空氣儲(chǔ)能技術(shù)概述
儲(chǔ)能技術(shù)可解決可再生能源大規(guī)模接入、提高常規(guī)電力系統(tǒng)和區(qū)域能源系統(tǒng)效率、安全性和經(jīng)濟(jì)性的迫切需要,被稱為能源革命的支撐技術(shù)。截至2016 年底,我國儲(chǔ)能裝機(jī)為24.2GW,約占全國電力總裝機(jī)的1.5%,遠(yuǎn)低于世界2.7% 的平均水平。預(yù)計(jì)到2050 年,我國儲(chǔ)能裝機(jī)將達(dá)到200GW 以上,占發(fā)電總量的10%~15%, 市場需求巨大而迫切。壓縮空氣儲(chǔ)能系統(tǒng)具有規(guī)模大、效率高、成本低、環(huán)保等優(yōu)點(diǎn), 被認(rèn)為是最具發(fā)展?jié)摿Φ拇笠?guī)模儲(chǔ)能技術(shù)之一。
目前,全球已有兩座大規(guī)模壓縮空氣儲(chǔ)能電站投入了商業(yè)運(yùn)行。
第一座是1978 年投入商業(yè)運(yùn)行的德國Huntorf 電站(圖1)。機(jī)組采用兩級(jí)壓縮兩級(jí)膨脹,壓縮機(jī)功率為60MW,膨脹機(jī)功率為290MW(2007 年擴(kuò)容至321MW),壓縮空氣存儲(chǔ)在地下600 米的廢棄礦洞中,總?cè)莘e達(dá)3.1×105m3,壓力最高可達(dá)100bar。機(jī)組可連續(xù)充氣8 小時(shí),連續(xù)發(fā)電2 小時(shí)。機(jī)組從靜止到滿負(fù)荷需要11 分鐘,冷態(tài)啟動(dòng)至滿負(fù)荷約需6 分鐘,電站效率為42%。
第二座是于1991 年投入商業(yè)運(yùn)行的美國McIntosh 電站(圖2)。其儲(chǔ)氣洞穴在地下450 米,總?cè)莘e達(dá)5.6×105m3,儲(chǔ)氣壓力約為75bar。該電站壓縮機(jī)功率為50MW,膨脹機(jī)功率為110MW,可實(shí)現(xiàn)連續(xù)41 小時(shí)充氣和26 小時(shí)發(fā)電,機(jī)組從啟動(dòng)到滿負(fù)荷約需9 分鐘, 系統(tǒng)效率為54%。另外,日本于2001 年在北海道空知郡投運(yùn)了上砂川町2MW 壓縮空氣儲(chǔ)能示范項(xiàng)目。其余國家如瑞士、法國、英國、意大利、俄羅斯、以色列、芬蘭、南非和韓國等國家也在積極開發(fā)壓縮空氣儲(chǔ)能電站。
以上商業(yè)電站均屬于傳統(tǒng)壓縮空氣儲(chǔ)能技術(shù)(圖3)。在用電低谷,壓縮機(jī)將空氣壓縮并存于儲(chǔ)氣室中,使電能轉(zhuǎn)化為空氣的內(nèi)能存儲(chǔ)起來;在用電高峰,高壓空氣從儲(chǔ)氣室釋放,進(jìn)入燃燒室同燃料一起燃燒,然后驅(qū)動(dòng)透平發(fā)電。
但傳統(tǒng)壓縮空氣儲(chǔ)能系統(tǒng)存在三個(gè)技術(shù)瓶頸,一是依賴天然氣等化石燃料提供熱源,不適合我國這類“缺油少氣”的國家;二是需要特殊地理?xiàng)l件建造大型儲(chǔ)氣室,如高氣密性的巖石洞穴、鹽洞、廢棄礦井等;三是系統(tǒng)效率較低(分別為42%、54%),需進(jìn)一步提高。
新型壓縮空氣儲(chǔ)能技術(shù)研發(fā)進(jìn)展
為解決傳統(tǒng)壓縮空氣儲(chǔ)能的技術(shù)瓶頸問題,近年來,國內(nèi)外學(xué)者開展了新型壓縮空氣儲(chǔ)能技術(shù)研發(fā)工作,包括絕熱壓縮空氣儲(chǔ)能、蓄熱式壓縮空氣儲(chǔ)能及等溫壓縮空氣儲(chǔ)能(不使用燃料)、液態(tài)空氣儲(chǔ)能(不使用大型儲(chǔ)氣室)、超臨界壓縮空氣儲(chǔ)能(不使用大型儲(chǔ)氣室、不使用燃料)等。
絕熱式壓縮空氣儲(chǔ)能
絕熱式壓縮空氣儲(chǔ)能技術(shù)通過儲(chǔ)熱裝置回收壓縮熱并儲(chǔ)存,使壓縮及膨脹過程近似于絕熱過程,不必燃燒化石燃料,并且能保持較高的儲(chǔ)能密度及效率。其工作原理為:儲(chǔ)能時(shí),通過壓縮機(jī)將空氣壓縮至高溫高壓狀態(tài)后,通過儲(chǔ)熱系統(tǒng)將壓縮熱儲(chǔ)存,空氣降溫并儲(chǔ)存在儲(chǔ)罐中。釋能時(shí),將高壓空氣釋放,利用儲(chǔ)存的壓縮熱使空氣升溫,由高溫高壓空氣推動(dòng)膨脹機(jī)做功發(fā)電。
該系統(tǒng)回收了壓縮熱并且再利用,使系統(tǒng)效率得到了較大提高,同時(shí)去除了燃燒室,實(shí)現(xiàn)了零排放。但由于壓縮機(jī)級(jí)間不回收熱量、冷卻空氣,故壓縮過程能耗較高。由于壓縮機(jī)出口的空氣溫度高,對(duì)設(shè)備材料要求高。
德國RWE Power 公司于2010 年啟動(dòng)ADELE 項(xiàng)目, 設(shè)計(jì)儲(chǔ)熱溫度600 ℃, 設(shè)計(jì)儲(chǔ)氣壓力100bar,理論設(shè)計(jì)效率可達(dá)70%,該項(xiàng)目一直處于論證階段。
蓄熱式壓縮空氣儲(chǔ)能
蓄熱式壓縮空氣儲(chǔ)能又被稱作先進(jìn)絕熱壓縮空氣儲(chǔ)能,其原理同絕熱壓縮空氣儲(chǔ)能類似,區(qū)別在于該系統(tǒng)在壓縮過程級(jí)間換熱及儲(chǔ)熱,絕熱壓縮空氣儲(chǔ)能在全部壓縮過程結(jié)束后儲(chǔ)熱。相較于絕熱壓縮空氣儲(chǔ)能,蓄熱式壓縮空氣儲(chǔ)能系統(tǒng)的儲(chǔ)熱溫度及儲(chǔ)能密度較低,但其壓縮機(jī)耗能減小,且對(duì)于壓縮機(jī)材料要求不高。該系統(tǒng)缺點(diǎn)在于增加了多級(jí)換熱及儲(chǔ)熱,系統(tǒng)初投資有所增加。
中國科學(xué)院工程熱物理研究所于2013 年在廊坊建成國內(nèi)首套1.5MW 蓄熱式壓縮空氣儲(chǔ)能示范系統(tǒng),于2016 年在貴州畢節(jié)建成國際首套10MW 示范系統(tǒng),效率達(dá)60.2%,是全球目前效率最高的壓縮空氣儲(chǔ)能系統(tǒng)。
等溫壓縮空氣儲(chǔ)能
等溫壓縮空氣儲(chǔ)能系統(tǒng)是指通過一定措施(如活塞、噴淋、底部注氣等),通過比熱容大的液體(水或者油)提供近似恒定的溫度環(huán)境,增大氣液接觸面積和接觸時(shí)間,使空氣在壓縮和膨脹過程中無限接近于等溫過程,將熱損失降到最低,從而提高系統(tǒng)效率,其理論效率可達(dá)70% 以上。此外,該技術(shù)不必提供外部熱源,還可以減少部件的熱應(yīng)力。但該系統(tǒng)也存在一定問題,在壓縮過程中,部分空氣溶解于水中而沒有存儲(chǔ)到儲(chǔ)氣罐,造成部分能量損失。
美國SustainX 公司于2013 年在美國New Hampshire 州建成1.5MW/1.5MWh 的示范系統(tǒng)。美國General Compression 公司于2012 年在美國Texas 州建成2MW/500MWh 示范系統(tǒng)。目前,上述兩家公司已經(jīng)合并成立GCX 能源公司,繼續(xù)開展壓縮空氣儲(chǔ)能技術(shù)開發(fā)工作。美國的Lightsail 公司也開展等溫壓縮空氣儲(chǔ)能研發(fā),目前正在加拿大Nova Scotia 省建設(shè)500kW/3MWh 示范項(xiàng)目。
液態(tài)空氣儲(chǔ)能
液態(tài)壓縮空氣儲(chǔ)能是將電能轉(zhuǎn)化為液態(tài)空氣的內(nèi)能以實(shí)現(xiàn)能量存儲(chǔ)的技術(shù)。儲(chǔ)能時(shí),利用富余電能驅(qū)動(dòng)電動(dòng)機(jī)將空氣壓縮、冷卻、液化后注入低溫儲(chǔ)罐儲(chǔ)存;發(fā)電時(shí),液態(tài)空氣從儲(chǔ)罐中引出,加壓后送入蓄冷裝置將冷量儲(chǔ)存并使空氣升溫氣化,高壓氣態(tài)空氣通過換熱器進(jìn)一步升溫后進(jìn)入膨脹機(jī)做功發(fā)電。由于液態(tài)空氣的密度遠(yuǎn)大于氣態(tài)空氣,其儲(chǔ)氣室容積可減少約20 倍,大幅壓縮系統(tǒng)占地面積,綜合成本有下降的空間。但由于系統(tǒng)增加液化冷卻和氣化加熱過程,增加了額外損耗。
英國Highview 儲(chǔ)能公司于2010 年建成350kW/2.5MWh 液態(tài)空氣儲(chǔ)能示范系統(tǒng)并成功投運(yùn),目前正在開展5MW/15MWh 示范電站建設(shè)。中科院工程熱物理所于2013 年在廊坊建成1.5MW 液態(tài)空氣儲(chǔ)能示范系統(tǒng)。其余機(jī)構(gòu)如中科院理化技術(shù)研究所、智能電網(wǎng)研究院、東南大學(xué)、昆明理工大學(xué)等也開展了相關(guān)理論及實(shí)驗(yàn)研究。

責(zé)任編輯:繼電保護(hù)
-
權(quán)威發(fā)布 | 新能源汽車產(chǎn)業(yè)頂層設(shè)計(jì)落地:鼓勵(lì)“光儲(chǔ)充放”,有序推進(jìn)氫燃料供給體系建設(shè)
2020-11-03新能源,汽車,產(chǎn)業(yè),設(shè)計(jì) -
中國自主研制的“人造太陽”重力支撐設(shè)備正式啟運(yùn)
2020-09-14核聚變,ITER,核電 -
探索 | 既耗能又可供能的數(shù)據(jù)中心 打造融合型綜合能源系統(tǒng)
2020-06-16綜合能源服務(wù),新能源消納,能源互聯(lián)網(wǎng)
-
新基建助推 數(shù)據(jù)中心建設(shè)將迎爆發(fā)期
2020-06-16數(shù)據(jù)中心,能源互聯(lián)網(wǎng),電力新基建 -
泛在電力物聯(lián)網(wǎng)建設(shè)下看電網(wǎng)企業(yè)數(shù)據(jù)變現(xiàn)之路
2019-11-12泛在電力物聯(lián)網(wǎng) -
泛在電力物聯(lián)網(wǎng)建設(shè)典型實(shí)踐案例
2019-10-15泛在電力物聯(lián)網(wǎng)案例
-
新基建之充電樁“火”了 想進(jìn)這個(gè)行業(yè)要“心里有底”
2020-06-16充電樁,充電基礎(chǔ)設(shè)施,電力新基建 -
燃料電池汽車駛?cè)雽こ0傩占疫€要多久?
-
備戰(zhàn)全面電動(dòng)化 多部委及央企“定調(diào)”充電樁配套節(jié)奏
-
權(quán)威發(fā)布 | 新能源汽車產(chǎn)業(yè)頂層設(shè)計(jì)落地:鼓勵(lì)“光儲(chǔ)充放”,有序推進(jìn)氫燃料供給體系建設(shè)
2020-11-03新能源,汽車,產(chǎn)業(yè),設(shè)計(jì) -
中國自主研制的“人造太陽”重力支撐設(shè)備正式啟運(yùn)
2020-09-14核聚變,ITER,核電 -
能源革命和電改政策紅利將長期助力儲(chǔ)能行業(yè)發(fā)展
-
探索 | 既耗能又可供能的數(shù)據(jù)中心 打造融合型綜合能源系統(tǒng)
2020-06-16綜合能源服務(wù),新能源消納,能源互聯(lián)網(wǎng) -
5G新基建助力智能電網(wǎng)發(fā)展
2020-06-125G,智能電網(wǎng),配電網(wǎng) -
從智能電網(wǎng)到智能城市
-
山西省首座電力與通信共享電力鐵塔試點(diǎn)成功
-
中國電建公司公共資源交易服務(wù)平臺(tái)摘得電力創(chuàng)新大獎(jiǎng)
-
電力系統(tǒng)對(duì)UPS的技術(shù)要求